SYNTHESES OF " THIIRANORADIALENES "

Wataru Ando*, Yukio Haniu and Toshikazu Takata

Department of Chemistry, The University of Tsukuba
Sakura-mura, Ibaraki 305, Japan

Summary: A stable tetramethylthiiranoradialene, 2,3-diisopropylidenethiirane $\underline{6}$, was prepared by pyrolysis of lithium salt of tosyl hydrazone of 2,2-dimethyl-4-isopropylidene-3-thietanone. The corrsponding sulfoxide $\underline{7}$ was also prepared by oxidation of 6.

Special interest has long been focused on the syntheses of [3] \sim [6] radialenes. Nature of these unique π -systems has been associated with the aromaticity as well as unusual reactivity. Although recently preparation of "furanoradialene" has been reported no heteroradialene has been prepared for three-membered ring or any closely related derivatives. We present here first preparations of three-membered sulfur-radialene, "thiiranoradialene" 6, and its S-oxide 7, in connection with our carbene chemistry.

2,2-Dimethyl-4-isopropylidene-3-thietanone $\underline{1}$, prepared by Kellogg et al., was treated with excess tosyl hydrazine for a few minutes in the presence of catalytic amount of BF $_3$ etherate in EtOH at 50 \sim 70°C, yielding hydrazone $\underline{2}$. The purified hydrazone $\underline{2}$ was treated with equimolar of BuLi at -70°C in THF under dry conditions. Removal of the solvent afforded lithium salt of the hydrazone $\underline{2}$ which then was subjected to the usual bulk vacuum pyrolysis at $130 \sim 160$ °C (at ca 10^{-4} torr). During the pyrolysis, nitrogen was

NNHTs
$$\begin{array}{c}
 & \text{NNHTs} \\
 & \text{NNLiTs} \\
 & \text{S} \\
 &$$

evolved and colorless crystalline solid was collected in liq. nitrogen trap. The solid purified by silica gel column chromatography (60 \sim 70% yield) showed m.p. of 42.5 \sim 43.5°C and is stable under the conditions. The spectral data of the solid: IR(cm $^{-1}$, CDCl $_3$), 2960 $_{\rm w}$, 2900 $_{\rm m}$, 2850 $_{\rm w}$, 1440 $_{\rm m}$, 1360 $_{\rm w}$, 1060 $_{\rm w}$; 1 H-NMR(δ , CDCl $_3$), 2.05(s, 6H), 1.97(s, 6H); 13 C-NMR(δ , CDCl $_3$), 115.5, 111.3, 23.0, 22.7; MS(70eV), m/e 140(M $^{+}$), and elemental analysis (found: C: 68.69; H: 8.66; S: 22.59, required for C $_8$ H $_12$ S) established unequivocally the structure of $_6$. The ring contraction of carbene ($_4$) derived from the pyrolysis of lithium salt 3 may afford $_6$ in good yield via intermediary bicyclic sulfur ylide, $_5$.

Oxidation of thiiranoradialene $\underline{6}$ with equimolar of MCPBA in CH₂Cl₂ at ca 0°C gave readily "thiiranoradialene S-oxide " $\underline{7}$ in quantitative yield. The sulfoxide $\underline{7}$ was colorless crystals having m.p. $58.0 \sim 58.5$ °C and more labile than sulfide $\underline{6}$, slowly decomposing to unidentified substances even at -20°C. The structure of $\underline{7}$ was confirmed by following spectral data: IR(cm⁻¹, CDCl₃) $1035(v_{S-O})$; $^1_{H-NMR}(\delta, CDCl_3)$, 2.22(s, 6H), 2.17(s, 6H); $^{13}_{C-NMR}(\delta, CDCl_3)$, 131.2, 125.2, 23.4, 23.0.

REFERENCES AND FOOTNOTE

- 1) Barkorich, A. J., Strauss, E. S., and Vollhart, K. P. C., J. Am. Chem. Soc., 1977, 99, 8321, and references cited therein.
- Jullien, J., Pechine, J. M., Perez, F. and Piade, J. J., Tetrahedron Lett., 1980, 21, 611.
- 3) (a) Ando, W., Acc. Chem. Res., 1977, 10, 179. (b) Ando, W., "The Chemistry of Diazonium and Diazo-compounds ", ed. by Patai, S., part 1, 1978, P. 341
- 4) Bolster, J. and Kellogg, R. M., J. Org. Chem., 1980, 45, 4804.
- 5) Purified yield of $\underline{2}$ by column chromatography (silica gel, CH_2Cl_2) was ca 15% and ca 30% of 1 was recovered.
- 6) Hortmann, A. G. and Bhattacharjya, A., J. Am. Chem. Soc., 1976, 98, 7081.

(Received in Japan 23 September 1981)